Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
20 result(s) for "Calle-Sigüencia, John"
Sort by:
Impact of Solar Thermal Energy on the Energy Matrix under Equatorial Andean Context
Low-temperature solar thermal energy is a viable and mature alternative to reduce the use of fossil fuels for domestic hot water heating. The impact of the inclusion of this technology in the energy matrix in the Andean city of Cuenca, Ecuador, is analyzed. In Ecuador, liquefied petroleum gas (LPG) is currently used to heat water due to the high state subsidy, with a cost of 0, 11 USD for an LPG kg compared to the international price of 1.18 USD a Kg of LPG in 2021. Sustainability indicators show that the urban energy matrix would be minimally affected by a high penetration of solar thermal systems. The indicators that are positively affected are related to energy self-sufficiency, emissions, and employment at the expense of an increase in the cost of energy. Moreover, the analysis of the impact on consumption exclusively in the residential sector shows that liquefied petroleum gas consumption would drop from 73 to 64%, mainly because the liquefied gas is used in cooking. However, the change in technology is limited by the subsidized cost of liquefied petroleum gas, which makes the adoption of this technology difficult in the current state
Obtención de ACS con energía solar en el cantón Cuenca y análisis de la contaminación ambiental
En este documento se encuentra el análisis para determinar la factibilidad de implementación de calentadores solares para obtener Agua Caliente Sanitaria (ACS) en el Ecuador, en la provincia del Azuay, en el cantón Cuenca, con el fin de disminuir la contaminación ambiental provocada por el uso de combustibles fósiles. El proyecto considera la puesta en marcha de una red meteorológica y toma de datos de radiación solar global en 16 puntos ubicados zonas pobladas del cantón durante los años 2014 y 2015, posteriormente a través de un trabajo de campo se realiza un diagnóstico para establecer cuáles son los actuales sistemas usados para obtener ACS, también se analizan de manera teórica y práctica las eficiencias de dos tipos de calentadores solares de tubos de vacío para producción de ACS; con los datos de radiación medidos se modela aplicando las ecuaciones de transferencia de calor y se establece la factibilidad de implementación en función de la energía solar medida; finalmente, se realiza una comparación para determinar cuál sería la disminución de emanaciones de CO2 si se ejecutaría esta propuesta. Los resultados obtenidos indican que el 82 % de familias utiliza ACS y de estas el 65 % emplean sistemas a base de GLP y, que el 44 % de la demanda de energía para obtener ACS puede ser cubierta con energía solar necesitando utilizar sistemas auxiliares para garantizar un abastecimiento constante. La implementación de estos sistemas permitiría reducir 108 537 tn CO2 eq al año.
Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton
Motion assistance exoskeletons are designed to support the joint movement of people who perform repetitive tasks that cause damage to their health. To guarantee motion accompaniment, the integration between sensors and actuators should ensure a near-zero delay between the signal acquisition and the actuator response. This study presents the integration of a platform based on Imocap-GIS inertial sensors, with a motion assistance exoskeleton that generates joint movement by means of Maxon motors and Harmonic drive reducers, where a near zero-lag is required for the gait accompaniment to be correct. The Imocap-GIS sensors acquire positional data from the user’s lower limbs and send the information through the UDP protocol to the CompactRio system, which constitutes a high-performance controller. These data are processed by the card and subsequently a control signal is sent to the motors that move the exoskeleton joints. Simulations of the proposed controller performance were conducted. The experimental results show that the motion accompaniment exhibits a delay of between 20 and 30 ms, and consequently, it may be stated that the integration between the exoskeleton and the sensors achieves a high efficiency. In this work, the integration between inertial sensors and an exoskeleton prototype has been proposed, where it is evident that the integration met the initial objective. In addition, the integration between the exoskeleton and IMOCAP is among the highest efficiency ranges of similar systems that are currently being developed, and the response lag that was obtained could be improved by means of the incorporation of complementary systems.
Towards Multimodal Equipment to Help in the Diagnosis of COVID-19 Using Machine Learning Algorithms
COVID-19 occurs due to infection through respiratory droplets containing the SARS-CoV-2 virus, which are released when someone sneezes, coughs, or talks. The gold-standard exam to detect the virus is Real-Time Polymerase Chain Reaction (RT-PCR); however, this is an expensive test and may require up to 3 days after infection for a reliable result, and if there is high demand, the labs could be overwhelmed, which can cause significant delays in providing results. Biomedical data (oxygen saturation level—SpO2, body temperature, heart rate, and cough) are acquired from individuals and are used to help infer infection by COVID-19, using machine learning algorithms. The goal of this study is to introduce the Integrated Portable Medical Assistant (IPMA), which is a multimodal piece of equipment that can collect biomedical data, such as oxygen saturation level, body temperature, heart rate, and cough sound, and helps infer the diagnosis of COVID-19 through machine learning algorithms. The IPMA has the capacity to store the biomedical data for continuous studies and can be used to infer other respiratory diseases. Quadratic kernel-free non-linear Support Vector Machine (QSVM) and Decision Tree (DT) were applied on three datasets with data of cough, speech, body temperature, heart rate, and SpO2, obtaining an Accuracy rate (ACC) and Area Under the Curve (AUC) of approximately up to 88.0% and 0.85, respectively, as well as an ACC up to 99% and AUC = 0.94, respectively, for COVID-19 infection inference. When applied to the data acquired with the IMPA, these algorithms achieved 100% accuracy. Regarding the easiness of using the equipment, 36 volunteers reported that the IPMA has a high usability, according to results from two metrics used for evaluation: System Usability Scale (SUS) and Post Study System Usability Questionnaire (PSSUQ), with scores of 85.5 and 1.41, respectively. In light of the worldwide needs for smart equipment to help fight the COVID-19 pandemic, this new equipment may help with the screening of COVID-19 through data collected from biomedical signals and cough sounds, as well as the use of machine learning algorithms.
Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors
The performance of solar thermal technology under high-altitude equatorial climatic and solar path conditions has not been determined. Evacuated tube solar collectors are more efficient than flat plate collectors in cold and cloudy regions; however, due to their dependence on orientation, the irradiation incidence between the tubes of these collectors can be blocked. In this study, the performance of these types of collectors was analyzed to determine the implications of their orientation under these specific climate conditions. Four solar thermal systems were installed: two of the systems used evacuated tube collectors, and two used flat plate collectors. Each collector was connected to storage and discharge points to simulate residential consumption when observing the real performance of the four systems in terms of irradiation availability. The evacuated tube collectors were more efficient and reduced the backup energy requirement by up to 20.6% more on average than the flat plate collectors. In addition, the performance of the evacuated tube collectors increased by up to 9.8% when the tubes were arranged parallel to the solar path, compared to when they were arranged perpendicular to the solar path, verifying that the blockage effect is an important parameter to consider for evacuated tube technology. The main novelty of this research is the comparison of these two technologies under different orientations, with perpendicular and parallel dispositions toward the solar path, in a high-altitude equatorial location where solar collectors are not typically oriented in any particular orientation. To the best of our knowledge, this is the first complete analysis of real systems deployed under these conditions.
Situación energética del cantón Cuenca y líneas de acción preferentes para fortalecer la investigación y el desarrollo a nivel local
El presente artículo se fundamenta en una recopilación de datos a nivel del Ecuador y del Cantón Cuenca en lo que se refiere a generación y uso de la energía eléctrica y al uso de los combustibles fósiles. Todos los datos recopilados se analizan, se discriminan y se priorizan para caracterizar el uso de la energía partiendo de la realidad nacional y definiendo la realidad particular del cantón. Muchos de los datos se proyectan para establecer a futuro cuál será la condición energética de Cuenca en años posteriores y se analiza para establecer acciones que permitan fortalecer el buen vivir, el cuidado del medioambiente y el uso eficiente de la energía. Los puntos presentados al final de la investigación aportaran de manera significativa para determinar las líneas de acción en investigación, desarrollo e innovación que emprenderá la Universidad Politécnica Salesiana en el ámbito de la energía a través del CIAME (Centro de Investigación en Automatización, Materiales y Energía).